Selected Publications
2024
Zhongxiao Liu, Jia Wei, Shuai Gong*, Ping Cheng, High Fidelity Simulations of Nucleate Boiling Heat Transfer Mechanisms Associated with a Single Bubble Considering Microscale Effects, under review.
Ming Jiao, Ping Cheng*, Mingguang Zheng, Li Zhang, Shuai Gong*, CHF Enhancements of Flame-Sprayed Porous Coatings on the Outer Surface of Reactor Pressure Vessel Bottom Head, International Journal of Heat and Mass Transfer, 232 (2024) 125930.
Shuai Gong*, Zhiheng Hu, Ping Cheng*, A Mesoscopic Approach for Nanoscale Evaporation Heat Transfer Characteristics, International Journal of Heat and Mass Transfer, 231 (2024) 125856.
Panpan Zhao, Shuai Gong*, Chaoyang Zhang, Siliang Chen, Ping Cheng, Roles of Wettability and Wickability on Enhanced Hydrogen Evolution Reactions, ACS Applied Materials & Interfaces, 2024, 16, 27898–27907.
Junyang Li, Chaoyang Zhang, Ping Cheng, Shuai Gong*, Three-Dimensional Pore-Scale Simulations of Dynamic Wicking Processes on Micro-Structured Wicks, Physics of Fluids, 36, 042112 (2024).
Zhiheng Hu, Shuai Gong*. Correction to “Mesoscopic Model for Disjoining Pressure Effects in Nanoscale Thin Liquid Films and Evaporating Extended Meniscuses”, Langmuir 2024, 40, 5, 2781
Zhiyuan Ma , Chaoyang Zhang , Shuai Gong , Chun Yang , P. Cheng*, Lattice Boltzmann simulation of water droplet impact and freezing on inclined supercooled surfaces with different roughnesses and wettabilities, International Journal of Heat and Mass Transfer 233 (2024) 126051
2023
1. Shuai Gong , Zhiheng Hu, Lining Dong, and Ping Cheng*, Temperature- and Curvature-dependent surface tensions and Tolman lengths for real fluids: a mesoscopic investigation, Physics of Fluids, 35, 073315 (2023).
2. Wenhan Zheng, Fangjun Hong*, and Shuai Gong. "Improved multi-relaxation time thermal pseudo-potential lattice Boltzmann method with multi-block grid and complete unit conversion for liquid–vapor phase transition." Physics of Fluids 35, 053337, 2023.
3. Zhiheng Hu, Shuai Gong*. Mesoscopic Model for Disjoining Pressure Effects in Nanoscale Thin Liquid Films and Evaporating Extended Meniscuses, Langmuir 2023, 39, 13359–13370.
4. Panpan Zhao, Chaoyang Zhang, Shuai Gong*, Size Ranges of Effective Nucleation Cavities on Gas-evolving Surfaces, Langmuir 2023, 39, 45, 16101–16110.
2022
1. Shuai Gong*, Fangjun Hong, Qing Guo, Lenan Zhang, Ping Cheng*, Mesoscopic Approach for Nanoscale Liquid-Vapor Interfacial Statics and Dynamics, International Journal of Heat and Mass Transfer, 194, 2022, 123104.
2. Junyang Li#, Shuai Gong#, *, Lenan Zhang, Ping Cheng*, Xiaojing Ma, Fangjun Hong, Wetting States and Departure Diameters of Bubbles on Micro-/Nanostructured Surfaces, Langmuir, 2022, 38, 10, 3180–3188.
3. Panpan Zhao, Zhiheng Hu, Ping Cheng, Rongzong Huang, and Shuai Gong*,Coalescence-Induced Bubble Departure: Effects of Dynamic Contact Angles,Langmuir 2022, 38, 34, 10558–10567.
4. Ryuichi Iwata, Lenan Zhang, Zhengmao Lu, Shuai Gong, Jianyi Du, Evelyn N Wang. How Coalescing Bubbles Depart from a Wall, Langmuir, 2022, 38, 14, 4371–4377.
5. Lenan Zhang#, Shuai Gong#, Zhengmao Lu, Ping Cheng*, Evelyn N. Wang*, "Boiling crisis due to bubble interactions," International Journal of Heat and Mass Transfer, 182, 2022, 121904.
6. Zhaolong Wang, Yingying Li, Shuai Gong, Wenhao Li, Huigao Duan, Ping Cheng, Yongping Chen, and Zhichao Dong, Three-Dimensional Open Water Microchannel Transpiration Mimetics, ACS Applied Materials & Interfaces, 2022, 14, 26, 30435–30442.
7. Wenhan Zheng, Jian Li, Fangjun Hong, Shuai Gong, Ping Cheng. Mesoscale Simulations on the Ultrahigh Heat Flux Evaporation of R143a within Ultrathin Nanoporous Membrane Using a Modified Dimensionless Lattice Boltzmann Method, International Journal of Heat and Mass Transfer 192, 2022, 122939.
2021
Lenan Zhang#, Shuai Gong#, Zhengmao Lu, Ping Cheng*, Evelyn N. Wang*, "Boiling crisis due to bubble interactions," International Journal of Heat and Mass Transfer, 182, 2022, 121904.
Youngsup Song, Shuai Gong, Geoffrey Vaartstra, and Evelyn N. Wang*. Microtube surfaces for simultaneous enhancement of efficiency and critical heat flux during pool boiling, ACS Applied Materials & Interfaces, 2021, 13, 10, 12629-12635.
Ryuichi Iwata, Lenan Zhang, Kyle Wilke, Shuai Gong, Mingfu He, Betar M. Gallant and Evelyn N. Wang, Bubble growth and departure modes on wettable/non-wettable porous foams in alkaline water splitting, Joule, 5(4), 2021, 887-900.
(MIT NEWS:https://news.mit.edu/2021/controlling-bubble-electrodes-0326 )
Lenan Zhang, Zhenyuan Xu, Lin Zhao, Bikram Bhatia, Yang Zhong, Shuai Gong and Evelyn N. Wang, Passive, high-efficiency thermally-localized solar desalination, Energy & Environmental Science, 14(4), 2021, 1771-1793.
2020
Shuai Gong, Lenan Zhang, Ping Cheng, Evelyn N. Wang, Understanding triggering mechanisms for critical heat flux in pool boiling based on direct numerical simulations, International Journal of Heat and Mass Transfer, 163, 120546, 2020.
Lenan Zhang#, Shuai Gong#, Zhengmao Lu, Ping Cheng, Evelyn N. Wang, A unified relationship between bubble departure frequency and diameter during saturated nucleate pool boiling, International Journal of Heat and Mass Transfer,Volume 165, Part A, 2021, 120640.
Lenan Zhang, Ryuichi Iwata, Lin Zhao, Shuai Gong, Zhengmao Lu, Zhenyuan Xu, Yang Zhong, Jinlong Zhu, Samuel Cruz, Kyle L. Wilke, Ping Cheng, Evelyn N. Wang, Nucleation Site Distribution Probed by Phase-Enhanced Environmental Scanning Electron Microscopy, Cell Reports Physical Science, 2020, 100262.
Before 2019:
JOURNAL PUBLICATIONS
1. Shuai Gong and Ping Cheng, Direct numerical simulations of pool boiling curves including heater's thermal responses and the effect of vapor phase's thermal conductivity, International Communications in Heat and Mass Transfer 87 (2017) 61-71.
2. Shuai Gong and Ping Cheng, Two-dimensional mesoscale simulations of saturated pool boiling from rough surfaces. Part II: Bubble interactions above multi-cavities, International Journal of Heat and Mass Transfer 100 (2016) 938-948.
3. Shuai Gong, Ping Cheng and Xiaojun Quan, Two-dimensional mesoscale simulations of saturated pool boiling from rough surfaces. Part I: Bubble nucleation in a single cavity at low superheats, International Journal of Heat and Mass Transfer 100 (2016) 927-937.
4. Shuai Gong and Ping Cheng, Lattice Boltzmann simulations for surface wettability effects in saturated pool boiling heat transfer, International Journal of Heat and Mass Transfer 85 (2015) 635-646.
5. Shuai Gong and Ping Cheng, Numerical simulation of pool boiling heat transfer on smooth surfaces with mixed wettability by lattice Boltzmann method, International Journal of Heat and Mass Transfer 80 (2015) 206-216.
6. Shuai Gong and Ping Cheng, Numerical investigation of saturated flow boiling in microchannels by the lattice Boltzmann method, Numerical Heat Transfer, Part A 65 (2014) 644-661.
7. Shuai Gong and Ping Cheng, Lattice Boltzmann simulation of periodic bubble nucleation, growth and departure from a heated surface in pool boiling, International Journal of Heat and Mass Transfer 64 (2013) 122-132.
8. Shuai Gong and Ping Cheng, A lattice Boltzmann method for simulation of liquid-vapor phase-change heat transfer, International Journal of Heat and Mass Transfer 55 (2012) 4923-4927.
9. Shuai Gong and Ping Cheng, Numerical investigation of droplet motion and coalescence by an improved lattice Boltzmann model for phase transitions and multiphase flows, Computers & Fluids 53 (2012) 93-104.
10. Shuai Gong, Ping Cheng and Xiaojun Quan, Lattice Boltzmann simulation of droplet formation in microchannels under an electric field, International Journal of Heat and Mass Transfer 53 (2010) 5863-5870.
11. Lining Dong, Shuai Gong and Ping Cheng, Direct numerical simulations of film boiling heat transfer by a phase-change lattice Boltzmann method, International Communications in Heat and Mass Transfer 91 (2018) 109-116.
12. Ping Cheng*, Chaoyang Zhang and Shuai Gong. Lattice Boltzmann simulations of macro/microscale effects on saturated pool boiling curves for heated horizontal surfaces, Journal of Heat Transfer 139.11 (2017): 110801.
13. Xiaojing Ma, Ping Cheng, Shuai Gong and Xiaojun Quan, Mesoscale simulations of saturated pool boiling heat transfer under microgravity conditions, International Journal of Heat and Mass Transfer 114 (2017) 453-457.
14. Shuai Gong and Ping Cheng, Droplet Dynamics on Surfaces with Non-Uniform Wettability, Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiao Tong University, 48 (2) 2014: 239-243. In Chinese
15. Shuai Gong and Zhaoli Guo, Lattice Boltzmann simulation of flow over a transversely oscillating circular cylinder, Lixue Xuebao/Chinese Journal of Theoretical & Applied Mechanics 43 (5) 2011: 809-818. In Chinese
16. Shuai Gong and Zhaoli Guo, Lattice Boltzmann simulation of the flow around a circular cylinder oscillating streamwisely, Lixue Xuebao/Chinese Journal of Theoretical & Applied Mechanics 43(1) 2011:10-17. In Chinese
BOOK CHAPTERS
1. P. Cheng, X. Quan, S. Gong, X. Liu and L. Yang, Chapter Four-Recent analytical and numerical studies on phase-change heat transfer, Advances in Heat Transfer 46, 2014, 187-248, Elsevier.
2. P. Cheng, S. Gong, C. Zhang, Chapter Four-Lattice Boltzmann Simulations of Saturated Pool Boiling from Smooth and Rough Horizontal Surfaces, Encyclopaedia of Two-Phase Heat Transfer and Flows IV, 2018, 209-237, World Scientific Publishing Company.
Conference papers:
1. Ping Cheng, Xiaojun Quan, Shuai Gong et al., "Recent studies on surface roughness and wettability effects in pool boiling." The 15th International Heat Transfer Conference, Kyoto. 2014. (Keynote paper)