代表性论文专著
[1] R Cai#, K Yang#, X Wang#, et al. High-throughput design of complex oxides as isothermal, redox-activated CO2 sorbents for green hydrogen generation. Energy & Environmental Science, 2024.
[2] R Cai#, E Krzystowczyk#, B Braunberger, et al. Techno-economic analysis of chemical looping air separation using a perovskite oxide sorbent. International Journal of Greenhouse Gas Control. 2024, 132: 104070.
[3] R Cai, L Brody, Y Tian, et al. Numerical modeling of chemical looping oxidative dehydrogenation of ethane in a packed bed reactor. Chemical Engineering Journal, 2023, 469: 143930.
[4] R Cai#, H Bektas#, X Wang#, et al. Accelerated perovskite oxide development for thermochemical energy storage by a high-throughput combinatorial approach. Advanced Energy Materials, 2023, 2203833.
[5] R Cai, J Dou, E Krzystowczyk, et al. Chemical looping air separation with Sr0. 8Ca0. 2Fe0. 9Co0. 1O3-δ perovskite sorbent: Packed bed modeling, verification, and optimization. Chemical Engineering Journal, 2022, 429: 132370.
[6] R Cai, B Deng, X Tao, et al. Effects of horizontal tube arrays on heat transfer in an external heat exchanger. Applied Thermal Engineering, 2020, 181: 115964.
[7] R Cai, X Ke, Y Huang, et al. Applications of ultrafine limestone sorbents for the desulfurization process in CFB boilers. Environmental Science & Technology, 2019, 53(22): 13514-13523.
[8] R Cai, Y Huang, Y Li, et al. Effects of the limestone particle size on the sulfation reactivity at low SO2 concentrations using an LC-TGA. Materials, 2019, 12, 1496.
[9] R Cai, M Zhang, R Ge, et al. Experimental study on local heat transfer and hydrodynamics of a single tube and tube bundles in an external heat exchanger. Applied Thermal Engineering, 2019, 149: 924-938.
[10] R Cai, M Zhang, X Mo, et al. Experimental research on the unstable performances of parallel external loops in the circulating fluidized bed. Chemical Engineering Research and Design, 2018, 139: 1-11
[11] R Cai, H Zhang, M Zhang, et al. Development and application of the design principle of fluidization state specification in CFB coal combustion, a review. Fuel Processing Technology, 2018, 174: 41-52.
[12] R Cai, M Zhang, X Mo, et al. Operation characteristics of external heat exchangers in the 600MW supercritical CFB boiler. Fuel Processing Technology, 2018, 172: 65-71.
[13] D Li#, R Cai#, Ahn S#, et al. Hydrodynamics in the transport zone of a large-scale circulating fluidized bed boiler[J]. Powder Technology, 2022: 118099. (Equal contribution)
[14] L Brody#, R Cai#, A Thornton, et al. Perovskite-based phase transition sorbents for sorption-enhanced oxidative steam reforming of glycerol. ACS Sustainable Chemistry & Engineering, 2022, 10, 19, 6434–6445. (Equal contribution)
[15] D Li#, R Cai#, H Yang, et al. Operation characteristics of a bubbling fluidized bed heat exchanger with internal solid circulation for a 550-MWe ultra-supercritical CFB boiler. Energy, 2020, 192: 116503. (Equal contribution)
[16] R Cai, X Ke, J Lyu, et al. Progress of circulating fluidized bed combustion technology in China: a review. Clean Energy, 2017, 1(1): 36-49.
[17] 蔡润夏, 李凡星. 复杂氧化物载氧体的调变策略及在过程强化中的应用. 化工学报, 2021, 72(12): 6122-6130.
[18] 蔡润夏, 吕俊复, 张缦等. 超超临界循环流化床锅炉流化床换热器热偏差形成的流动基础. 锅炉技术, 2019, 50(04): 34-39+55.
[19] 蔡润夏, 黄逸群, 程璐等. 石灰石煅烧与硫化条件下磨耗特性研究. 化工学报, 2019, 70(8): 3086-3093.
[20] 蔡润夏, 柯希玮, 葛荣存等.循环流化床超细石灰石炉内脱硫研究. 中国电机工程学报, 2018, 38(10): 3042-3048+3155.
[21] 蔡润夏, 吕俊复, 凌文等. 超(超)临界循环流化床锅炉技术的发展. 中国电力, 2016, 49(12): 1-7.
[22] H Bektas, R Cai, L Brody, et al. Structural and thermodynamic assessment of Ba and Ba/Mg substituted SrFeO3−δ for “low-temperature” chemical looping air separation. Energy & Fuels, 2024.
[23] S Chen, R Cai, Zhang Y, et al. A semi-empirical model to estimate the apparent viscosity of dense, bubbling gas-solid suspension. Powder Technology, 2021, 377: 289-296.
[24] Y Li, R Cai, M Zhang, et al. Characterization of the sulfation reactivity of limestones with different particle size in a large-capacity TGA. Fuel, 2020, 271: 117292.
[25] Y Yao, R Cai, Y Zhang, et al. A method to measure the tube-wall temperature in CFB boilers. Applied Thermal Engineering, 2019, 153: 493-500.
[26] X Ke, R Cai, M Zhang, et al. Application of ultra-low NOx emission control for CFB boilers based on theoretical analysis and industrial practices. Fuel Processing Technology, 2018, 181: 252-258.
[27] G Yue, R Cai, J Lu, et al. From a CFB reactor to a CFB boiler–the review of R&D progress of CFB coal combustion technology in China. Powder Technology, 2017, 316: 18-28. (导师一作)
[28] X Mo, R Cai, X Huang, et al. The effects of wall friction and solid acceleration on the mal-distribution of gas–solid flow in double identical parallel cyclones. Powder Technology, 2015, 286: 471-477.
[29] L Brody, M Rukh, R Cai, et al. Sorption-enhanced steam reforming of toluene using multifunctional perovskite phase transition sorbents in a chemical looping scheme. Journal of Physics: Energy, 2023.
[30] X Wang, Y Gao, E Krzystowczyk, S Iftikhar, J Dou, R Cai, et al. High-throughput oxygen chemical potential engineering of perovskite oxides for chemical looping applications. Energy & Environmental Science, 2022, 15(4), 1512-1528.
[31] I Wang, Y Gao, X Wang, R Cai, et al. Liquid metal shell as an effective iron oxide modifier for redox-based hydrogen production at intermediate temperatures. ACS Catalysis, 2021, 11(16): 10228-10238.
[32] X Ke, M Engblom M, L Cheng, L Chen, R Cai, et al. Modeling and experimental investigation on the fuel particle heat-up and devolatilization behavior in a fluidized bed. Fuel, 2021, 288: 119794.
[33] D Li, M Zhang, M Kim, R Cai, et al. Limestone attrition and product layer development during fluidized bed sulfation. Energy & Fuels, 2020, 34(2): 2117-2125.
[34] X Ke, D Li, M Zhang, C Jeon, R Cai, et al. Ash formation characteristics of two Indonesian coals and the change of ash properties with particle size. Fuel Processing Technology, 2019, 186: 73-80..
[35] 聂立, 蔡润夏, 鲁佳易等. 循环流化床外置换热器壁温偏差改进措施. 浙江大学学报(工学版), 2021, 55(03): 578-585.
[36] 陶欣, 蔡润夏, 陈陆剑等. 烧结烟气气氛下煤燃烧特性热重实验研究. 热力发电, 2020, 49(07):55-60
[37] 柯希玮, 蔡润夏, 吕俊复等. 钙基脱硫剂对循环流化床NOx排放影响研究进展.洁净煤技术,2019,25(01): 1-11.
[38] 张缦, 蔡润夏, 姜孝国等. 660 MW高效超超临界双炉膛循环流化床锅炉的设计开发. 动力工程学报, 2018, 38(05):341-346.
[39] 柯希玮, 蔡润夏, 杨海瑞等. 循环流化床燃烧的NOx生成与超低排放. 中国电机工程学报, 2018, 38(02): 390-396+669.
[40] 柳成亮, 蔡润夏, 吕俊复等. 燃用劣质煤大型循环流化床锅炉超低排放技术研究与应用. 中国电力,2018, 51(8): 1-6.
[41] 莫鑫, 蔡润夏, 吕俊复等. 基于返料灰温偏差的600MW(e)循环流化床锅炉内气固不均匀分布. 中国电机工程学报, 2016, 36(08): 2175-2180.
[42] 莫鑫, 蔡润夏, 吕俊复等. 600MWe超临界循环流化床锅炉的运行特性. 锅炉技术, 2016, 47(04):34-38.
[43] 汪佩宁, 蔡润夏, 柳成亮等. 300MWe节能型循环流化床锅炉的设计与运行. 沈阳工程学院学报(自然科学版), 2016, 12(04): 308-313.
[44] 葛荣存, 张贤, 蔡润夏等. 流化床选择性排渣的实验研究. 煤炭学报, 2018, 43(04): 1134-1139.
[45] 张贤, 葛荣存, 蔡润夏等. 连续进出料CFB密相区中颗粒横向运动行为模拟研究. 中国电机工程学报, 2018, 38(02): 413-420+672.
[46] 史航, 李强, 蔡润夏等. 循环灰作为固体吸附剂脱除高温烟气中碱金属蒸汽研究. 煤炭学报, 2016, 41(10): 2527-2532.
[47] 葛荣存, 汪达, 张贤, 蔡润夏等. 鼓泡流化床排渣流动的模拟与实验研究. 煤炭学报, 2017, 42(S2): 486-493.